Jean Baptiste Boussingault

How are you related to Jean Baptiste Boussingault?

Connect to the World Family Tree to find out

Jean Baptiste Boussingault's Geni Profile

Share your family tree and photos with the people you know and love

  • Build your family tree online
  • Share photos and videos
  • Smart Matching™ technology
  • Free!

Jean Baptiste Boussingault

Birthdate:
Birthplace: Paris, Paris, Île-de-France, France
Death: May 11, 1887 (85)
Paris, Paris, Île-de-France, France
Immediate Family:

Son of Charles Nicolas Joseph Boussingault and Elisabeth Munch
Husband of Adèle Le Bel
Father of Berthe Boussingault

Occupation: Travaux de chimie agricole et pour la mise au point des premiers aciers au chrome.
Managed by: Private User
Last Updated:

About Jean Baptiste Boussingault

Wikipedia Biographical Summary:

"...Jean-Baptiste Joseph Dieudonné Boussingault (2 February 1802 – 11 May 1887) was a French chemist who made significant contributions to agricultural science, petroleum science and metallurgy.

Jean-Baptiste Boussingault - an agricultural scientist and chemist of importance - was born in Paris. After studying at the school of mines at Saint-Etienne he went to Alsace to work in the asphalt mines - a two year interlude that was to shape his contributions to science. Then, little more than twenty years old,he went to South America as a mining engineer on behalf of an English company. During the insurrection of the Spanish colonies he was attached to the staff of General Bolivar and traveled widely in the northern parts of the continent, climbing to a new highest altitude by a Western explorer on Chimborazo in the process.[1][2] Contrary to earlier Encyclopædia Britannica entries, his greatest contributions were in biological and related applied fields.
Returning to France he married Adele Le Bel whose family had the concession to the asphalt mines where he had previously worked and it was in this period that he made his greatest discoveries. Later he became professor of chemistry at Lyon, and in 1839 was appointed to the chair of agricultural and analytical chemistry at the Conservatoire des Arts et Metiers in Paris. In 1848 he was elected to the National Assembly representing his adopted Alsace, where he sat as a Moderate republican. Three years later he was dismissed from his professorship on account of his political opinions, but so much resentment at this action was shown by scientific men in general, and especially by his colleagues, who threatened to resign in a body, that he was reinstated. He died in Paris. His first papers were concerned with agricultural and mining topics, and his sojourn in South America yielded a number of miscellaneous memoirs, on the cause of goitre in the Cordilleras, the gases of volcanoes, earthquakes, tropical rain, &c., which won the commendation of Alexander von Humboldt. From 1836 he devoted himself mainly to agricultural chemistry and animal and vegetable physiology, with occasional excursions into mineral chemistry. His work included papers on the quantity of nitrogen in different foods, the amount of gluten in different wheats, investigations on the question whether plants can assimilate free nitrogen from the atmosphere (which he answered in the negative and propose the basis of what became known as the nitrogen cycle), the respiration of plants, the function of their leaves, the action and value of manures and chemical fertilizers, and other similar subjects. In 1839, he was elected a foreign member of the Royal Swedish Academy of Sciences. Through his wife Adele Le Bel he had a share in an estate at Pechelbronn in Alsace, where he carried out many agricultural experiments on what is considered to be the first agricultural experimental station (as defined in terms of scientific experimentation on a field basis). He collaborated with Jean Baptiste Dumas in writing an Essai de statique chimique des ltres organists (1841), and was the author of Traite d'economie rurale (1844), which was remodelled as Agronomie, chimie agricole, et physiologie (5 vols., 1860–1874; 2nd ed., 1884), and of Etudes sur la transformation du fer en acier (1875).

Scientific discoveries[edit] Boussingault re-introduced the quantitative methods first employed by de Saussure and is credited with the following main discoveries related to agriculture, as well as others in fields of petroleum and metallurgy. In agriculture, discoveries include:

  • the first analysis of crops grown in a rotation
  • the increase in soil nitrogen following the growth of legume crops
  • the theory (later confirmed by Persoz) that the carbohydrate fraction of a food ration is metabolized to fat in herbivores
  • plant growth is proportional to the amount of available assimilatory nitrogen, which in practical terms allows greater plant growth from the simultaneous application of phosphorus and nitrogen
  • definition of the photosynthetic quotient.

SOURCE: http://en.wikipedia.org/wiki/Boussingault

About Jean Baptiste Boussingault (Français)

Ernest Kahane est l'auteur de sa biographie : "Boussingault entre Lavoisier et Pasteur", père incontesté de l'agronomie mondiale, parue en 1988 chez Jonas Editeur

Wikipedia Biographical Summary:

"...Jean-Baptiste Joseph Dieudonné Boussingault (2 February 1802 – 11 May 1887) was a French chemist who made significant contributions to agricultural science, petroleum science and metallurgy.

Jean-Baptiste Boussingault - an agricultural scientist and chemist of importance - was born in Paris. After studying at the school of mines at Saint-Etienne he went to Alsace to work in the asphalt mines - a two year interlude that was to shape his contributions to science. Then, little more than twenty years old,he went to South America as a mining engineer on behalf of an English company. During the insurrection of the Spanish colonies he was attached to the staff of General Bolivar and traveled widely in the northern parts of the continent, climbing to a new highest altitude by a Western explorer on Chimborazo in the process.[1][2] Contrary to earlier Encyclopædia Britannica entries, his greatest contributions were in biological and related applied fields.
Returning to France he married Adele Le Bel whose family had the concession to the asphalt mines where he had previously worked and it was in this period that he made his greatest discoveries. Later he became professor of chemistry at Lyon, and in 1839 was appointed to the chair of agricultural and analytical chemistry at the Conservatoire des Arts et Metiers in Paris. In 1848 he was elected to the National Assembly representing his adopted Alsace, where he sat as a Moderate republican. Three years later he was dismissed from his professorship on account of his political opinions, but so much resentment at this action was shown by scientific men in general, and especially by his colleagues, who threatened to resign in a body, that he was reinstated. He died in Paris. His first papers were concerned with agricultural and mining topics, and his sojourn in South America yielded a number of miscellaneous memoirs, on the cause of goitre in the Cordilleras, the gases of volcanoes, earthquakes, tropical rain, &c., which won the commendation of Alexander von Humboldt. From 1836 he devoted himself mainly to agricultural chemistry and animal and vegetable physiology, with occasional excursions into mineral chemistry. His work included papers on the quantity of nitrogen in different foods, the amount of gluten in different wheats, investigations on the question whether plants can assimilate free nitrogen from the atmosphere (which he answered in the negative and propose the basis of what became known as the nitrogen cycle), the respiration of plants, the function of their leaves, the action and value of manures and chemical fertilizers, and other similar subjects. In 1839, he was elected a foreign member of the Royal Swedish Academy of Sciences. Through his wife Adele Le Bel he had a share in an estate at Pechelbronn in Alsace, where he carried out many agricultural experiments on what is considered to be the first agricultural experimental station (as defined in terms of scientific experimentation on a field basis). He collaborated with Jean Baptiste Dumas in writing an Essai de statique chimique des ltres organists (1841), and was the author of Traite d'economie rurale (1844), which was remodelled as Agronomie, chimie agricole, et physiologie (5 vols., 1860–1874; 2nd ed., 1884), and of Etudes sur la transformation du fer en acier (1875).

Scientific discoveries[edit] Boussingault re-introduced the quantitative methods first employed by de Saussure and is credited with the following main discoveries related to agriculture, as well as others in fields of petroleum and metallurgy. In agriculture, discoveries include:

  • the first analysis of crops grown in a rotation
  • the increase in soil nitrogen following the growth of legume crops
  • the theory (later confirmed by Persoz) that the carbohydrate fraction of a food ration is metabolized to fat in herbivores
  • plant growth is proportional to the amount of available assimilatory nitrogen, which in practical terms allows greater plant growth from the simultaneous application of phosphorus and nitrogen
  • definition of the photosynthetic quotient.

SOURCE: http://en.wikipedia.org/wiki/Boussingault

view all

Jean Baptiste Boussingault's Timeline

1802
February 2, 1802
Paris, Paris, Île-de-France, France
1836
1836
1887
May 11, 1887
Age 85
Paris, Paris, Île-de-France, France