Paul Hermann Müller, Nobel Prize in Physiology or Medicine, 1948

How are you related to Paul Hermann Müller, Nobel Prize in Physiology or Medicine, 1948?

Connect to the World Family Tree to find out

Paul Hermann Müller, Nobel Prize in Physiology or Medicine, 1948's Geni Profile

Share your family tree and photos with the people you know and love

  • Build your family tree online
  • Share photos and videos
  • Smart Matching™ technology
  • Free!

Paul Hermann Müller, Nobel Prize in Physiology or Medicine, 1948

Also Known As: "Pauly Mueller"
Birthdate:
Birthplace: Olten, Olten District, Canton of Solothurn, Switzerland
Death: October 12, 1965 (66)
Immediate Family:

Son of Gottlieb Müller and Fanny Müller

Managed by: Yigal Burstein
Last Updated:
view all

Immediate Family

About Paul Hermann Müller, Nobel Prize in Physiology or Medicine, 1948

Paul Hermann Müller also known as Pauly Mueller (12 January 1899 – 13 October 1965) was a Swiss chemist who received the 1948 Nobel prize in Physiology or Medicine for his 1939 discovery of insecticidal qualities and use of DDT in the control of vector diseases such as malaria and yellow fever.

Early life and education

Müller was born on January 12, 1899 in Olten, Solothurn to Gottlieb and Fanny (née Leypoldt or Leypold) Müller.[2] He was the oldest of four children. His father worked for the Swiss Federal Railways and the family first moved to Lenzburg in Aargau and then to Basel.

Müller went to the "Freie Evangelische Volksschule" (free Protestant peoples school) and later to the lower and upper "Realschule". In that time, he had a small laboratory where he could develop photographic plates or build radio equipment.

In 1916 he left school to work as a laboratory assistant at Dreyfus (or Dreyfuss & Cie) and Company; the next year he became an assistant chemist in the Scientific-Industrial Laboratory of the electrical plant of Lonza A.G. Returning to school in 1918, he obtained his diploma by 1919 and entered Basel University in the same year.

At Basel University he studied chemistry (with a minor in botany and physics[1]) and started to study inorganic chemistry under professor Friedrich Fichter. In 1922 he continued his studies in the organic chemistry lab of Hans Rupe. While working for Rupe as assistant, he received his PhD writing a dissertation entitled Die chemische und elektrochemische Oxidation des as. m-Xylidins und seines Mono- und Di-Methylderivates (The Chemical and Electrochemical Oxidation of Asymmetrical m-Xylidene and its Mono- and Di-methyl Derivatives) in 1925. He graduated with summa cum laude.

Early work at Geigy

On 25 May 1925 Müller began working as a research chemist for the dye division of J. R. Geigy AG in Basel. His first research topics at Geigy concerned synthetic and plant-derived dyes and natural tanning agents. This work led to the production of the synthetic tanning agents Irgatan G, Irgatan FL and Irgatan FLT.

In 1935, Geigy began research on moth- and plant-protection agents and Müller was specifically interested in plant protection. He said that his love for plants and nature in general, which led him to choose botany as a minor subject at university, brought him to think about plant protection. Specifically, he wanted to start synthesizing chemical plant protection agents himself. In 1937, he patented a technique for synthesizing novel rhodanide- and cyanate-based compounds which showed bactericide and insecticide activity. He then developed the product Graminone, a seed disinfectant which was safer than the mercury-based disinfectants at the time.

Synthesis of DDT

After his success with tanning agents and disinfectants, Müller was assigned to develop an insecticide. "At that time," according to The World of Anatomy and Physiology, "the only available insecticides were either expensive natural products or synthetics ineffective against insects; the only compounds that were both effective and inexpensive were arsenic compounds, which were just as poisonous to human beings and other mammals."

During the course of his research, Müller found that insects absorbed chemicals differently than mammals. This led him to believe it likely that there are chemicals toxic exclusively to insects. He sought to "synthesize the ideal contact insecticide—one which would have a quick and powerful toxic effect upon the largest possible number of insect species while causing little or no harm to plants and warm-blooded animals." He also made it his goal to create an insecticide that was long-lasting and cheap to produce, along with a high degree of chemical stability.

In embracing this goal, Müller was motivated by two events. The first of these was a major food shortage in Switzerland, which underscored the need for a better way to control the infestation of crops by insects. The second was the typhus epidemic in Russia, which was the most extensive and lethal such epidemic in history. He began his search for his insecticide in 1935.

He studied all the data he could find on the subject of insecticides, decided which chemical properties the kind of insecticide he was in search of would exhibit, and set out to find a compound that would suit his purposes. Müller spent four years searching and failed 349 times before, in September 1939, he found the compound he was looking for. He placed a fly in a cage laced with one particular compound, and short while later, the fly died.

The compound he had placed in the cage was dichlorodiphenyltrichloroethane (DDT), or, more precisely, 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane, which a Viennese pharmacologist named Othmar Zeidler had first synthesized in 1874. Zeidler, while publishing a paper about his synthesis, had not investigated the properties of the new compound, and had thus failed to recognize its extraordinary value as an insecticide.

Müller quickly realized that DDT was the chemical he had been searching for. Tests of DDT by the Swiss government and the U.S. Department of Agriculture confirmed its effectiveness against the Colorado potato beetle. Further tests demonstrated its astonishing effectiveness against a wide range of pests, including the mosquito, louse, flea, and sandfly, which, respectively, spread malaria, typhus, the plague, and various tropical diseases.

Application of DDT

After taking out a Swiss patent on DDT in 1940 (a U.K. patent followed in 1942 and patents in the U.S. and Australia in 1943), Geigy began to market two DDT-based products, a 5% dust called Gesarol spray insecticide and a 3% dust called Neocid dust insecticide. The name DDT was first employed by the British Ministry of Supply in 1943, and the product was added to U.S. Army supply lists in May of the same year. It was also in 1943 that the first practical tests of DDT as a residual insecticide against adult vector mosquitoes were carried out. The next year, in Italy, tests were performed in which residual DDT was applied to the interior surfaces of all habitations and outbuildings of a community to test its effect on Anopheles vectors and malaria incidence.

During World War II, when supplies of the common insecticide pyrethrum were insufficient to meet the demand, DDT proved its remarkable effectiveness against typhus and malaria. Indeed, its ability to eradicate typhus and malaria was soon recognized to be unprecedented. It was discovered that in areas where malaria was endemic, the spread of the disease by mosquitoes could be prevented simply by spraying DDT twice a year on the inside walls of houses.

It was Victor Froelicher, Geigy’s representative in New York, who in October 1942 informed the U.S. military’s Office of Scientific Research and Development (OSRD) of the existence of DDT. When the OSRD's scientists studied Müller’s data, they immediately recognized the extent of its potential impact. “On Guadalcanal, and elsewhere in the South Pacific,” Robert Zubrin has written, “the Marines were losing more men to malaria than they were to the Japanese, with the entire 1st Marine Division rendered unfit for combat by the insect-borne disease. Without delay, first Geigy’s Cincinnati factory and then the giant DuPont chemical company were given contracts to produce the new pesticide in quantity.”

When Allied forces advanced into Europe, they discovered millions of civilians, slave labourers, prisoners of war, and concentration camp inmates dying from insect-borne diseases. The allies brought squads of troops spraying DDT, saving the lives of millions. After the liberation of Europe, the allies used the same tactic in the Philippines, Burma, China, and elsewhere in the Pacific. "Never before in history had a single chemical saved so many lives in such a short amount of time."

Between the 1950s and 1970s, DDT helped eradicate malaria entirely from many countries, the U.S. included. As Robert Zubrin notes, malaria afflicted millions of Americans in the years before and during World War II. But after the U.S. Public Health Service began an intensive campaign in 1946 to eliminate malaria by applying DDT to the interior walls of homes, "the results were dramatic. In the first half of 1952, there were only two confirmed cases of malaria contracted within the United States...In 1955, with financial backing from the United States, the U.N. World Health Organizations launched a global campaign to use DDT to eradicate malaria. Implemented successfully across large areas of the developing world, this effort soon cut malaria rates in numerous countries in Latin America and Asia by 99 percent or better."

For over two decades, DDT-based products were the most widely used insecticides in the world, playing a crucial role in increasing worldwide food production and saving the lives of people who would otherwise have died of insect-born diseases. DDT's remarkable effectiveness against malaria, which had plagued the human race since prehistory, perhaps causing the deaths of half the people who have ever lived, made it one of the greatest medical discoveries in history. The US National Academy of Sciences praised the unprecedented effectiveness of DDT in the following words: "To only a few chemicals does man owe as great a debt as to DDT. It is estimated that, in little more than two decades, DDT has prevented 500 million human deaths, due to malaria, that would otherwise have been inevitable."

Later scientific career

Müller became Geigy's Deputy Director of Scientific Research on Substances for Plant Protection in 1946. In 1948 he was awarded the Nobel Prize in Physiology and Medicine, "for his discovery of the high efficiency of DDT as a contact poison against several arthropods." The fact that he was accorded this honor even though he was neither a physician nor a medical researcher reflected the immense impact that DDT had had in the fight against human disease. The Nobel Committee said: "DDT has been used in large quantities in the evacuation of concentration camps, of prisons and deportees. Without any doubt, the material has already preserved the life and health of hundreds of thousands."

In addition to the 1948 Nobel Prize in physiology or medicine, Müller received an honorary doctorate from the University of Thessalonica in Greece in recognition of DDT's impact on the Mediterranean region. He retired from Geigy in 1961, continuing his research in a home laboratory.

Personal life

Müller married Friedel Rüegsegger in 1927 and had two sons, Heinrich (b. 1929) and Niklaus (b. 1933), and one daughter, Margaretha (b. 1934). In his free time, Müller liked the nature in the Swiss alps and in the Swiss Jura where he owned a small holiday home. Furthermore, he liked to photograph and owned a small fruit farm.

Müller was regarded as an independent soul; a lone wolf.

He died in the early morning of October 13, 1965 in Basel after a short illness.

view all

Paul Hermann Müller, Nobel Prize in Physiology or Medicine, 1948's Timeline

1899
January 12, 1899
Olten, Olten District, Canton of Solothurn, Switzerland
1965
October 12, 1965
Age 66